
COT 6405 Introduction to Theory of
Algorithms

Topic 9. Randomized Quicksort

10/6/2015 1

Worst case quicksort

• What will happen if the array is already
sorted?

– The partitioning routine produces n-1 elements
and one with 0 elements.

– How about the running time?

– T(n) = O(𝑛2)

10/6/2015 2

Improving quicksort

• The real liability of quicksort is that it runs in
O(n2) on an already-sorted input

• How to avoid this?

• Two solutions

– Randomize the input array

– Pick a random pivot element

• How will these solve the problem?

– By insuring that no particular input can be chosen
to make quicksort run in O(n2) time

3

Randomized version of quicksort

• We add randomization to quicksort.

– We could randomly permute the input array: very
costly

– Instead, we use random sampling to pick one
element at random as the pivot

• Don’t always use A[r] as the pivot.

4

Randomized version of quicksort

RANDOMIZED-PARTITION(A, p, r)

i ←RANDOM(p, r)

exchange A[r] ↔ A[i]

return PARTITION(A, p, r)

Randomization of quicksort stops any specific type of
array from causing the worst case behavior

– E.g., an already-sorted array causes worst-case behavior in
non-randomized QUICKSORT, but not in RANDOMIZED-
QUICKSORT.

5

Randomized version of quicksort

RANDOMIZED-QUICKSORT(A, p, r)

if p < r

then q ←RANDOMIZED-PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, q − 1)

RANDOMIZED-QUICKSORT(A, q + 1, r)

6

Analysis of quicksort

• We will analyze

– the worst-case running time of QUICKSORT and
RANDOMIZED-QUICKSORT

– the expected (average-case) running time of
RANDOMIZED-QUICKSORT

7

Worst-case analysis

• We saw a worst-case split (0:n-1) at every
level of recursion in quicksort produces a
Θ(𝑛2) running time, which,

– Intuitively, is the worst-case running time

• We now prove this assertion

10/6/2015 8

Worst-case analysis (cont’d)

• Let T (n) be the worst-case time for the
procedure QUICKSORT on an input of size n,
we have the recurrence

• 𝑇 𝑛 = max
0≤𝑞≤𝑛−1

(𝑇(𝑞)+ 𝑇(𝑛 − 𝑞 − 1)) + Θ(𝑛)

– q ranges between 0 and n-1, because the procedure
PARTITION produces two subproblems with total size n-1

• We guess that T(n) ≤ 𝑐𝑛2 for some constant c

10/6/2015 9

Worst-case analysis (cont’d)

• Substitution this guess into the recurrence, we
obtain

𝑇 𝑛 ≤ max
0≤𝑞≤𝑛−1

(𝑐𝑞2 + c 𝑛 − 𝑞 − 1 2) + Θ(𝑛)

= 𝑐 max
0≤𝑞≤𝑛−1

(𝑞2 + 𝑛 − 𝑞 − 1 2) + Θ(𝑛)

10/6/2015 10

Exercise

• What values of q can enable the expression
𝑞2 + 𝑛 − 𝑞 − 1 2 to achieve the maximum
value?

10/6/2015 11

Worst-case analysis (cont’d)

• 𝑞2 + 𝑛 − 𝑞 − 1 2 = 2𝑞2 − 2 𝑛 − 1 𝑞 + 𝑛 − 1 2

• What’s the shape of this function?

– A cup-shaped parabola

10/6/2015 12

(
𝑛−1

2
,
(𝑛−1)2

2
)

0 n-1
q

Worst-case analysis (cont’d)

• 𝑇 𝑛 ≤ 𝑐 max
0≤𝑞≤𝑛−1

(𝑞2 + 𝑛 − 𝑞 − 1 2) + Θ(𝑛)

The expression 𝑞2 + 𝑛 − 𝑞 − 1 2 achieves the

maximum value when q is either 0 or n-1.

10/6/2015 13

Worst-case analysis (cont’d)

• This observation gives us the bound

– max
0≤𝑞≤𝑛−1

(𝑞2 + 𝑛 − 𝑞 − 1 2) = 𝑛 − 1 2

= 𝑛2 − 2𝑛 + 1

• Continuing with our bounding of T(n), we obtain
𝑇 𝑛 ≤ 𝑐 max

0≤𝑞≤𝑛−1
(𝑞2 + 𝑛 − 𝑞 − 1 2) + Θ(𝑛)

= c 𝑛2 - c(2n-1) + Θ(𝑛)

≤ c 𝑛2

Since we can pick c large enough so that c(2n-1)
dominates Θ(𝑛), T(n) = O (𝑛2)

10/6/2015 14

Exercise

• Let T (n) be the worst-case time for the
procedure QUICKSORT on an input of size n.
Prove T(n) = Ω (𝑛2)

10/6/2015 15

Worst-case analysis (cont’d)

• 𝑇 𝑛 = max
0≤𝑞≤𝑛−1

(𝑇(𝑞)+ 𝑇(𝑛 − 𝑞 − 1)) + Θ(𝑛)

• We guess that T(n) ≥ 𝑑𝑛2 for some constant d
Substitution this guess into the recurrence, we
obtain

𝑇 𝑛 ≥ max
0≤𝑞≤𝑛−1

(𝑑𝑞2 + 𝑑 𝑛 − 𝑞 − 1 2) + Θ(𝑛)

= 𝑑 max
0≤𝑞≤𝑛−1

(𝑞2 + 𝑛 − 𝑞 − 1 2) + Θ(𝑛)

= d 𝑛2 - d(2n-1) + Θ(𝑛)

≥ d 𝑛2

Since we can pick a small d so that Θ 𝑛 dominates d(2n-1) , T(n)
= Ω (𝑛2)
10/6/2015 16

Average case analysis

• The dominant cost of the algorithm is
partitioning.

• What is the maximum number of calls to the
function PARTITION?

– Hint: PARTITION removes the pivot element from
future consideration each time.

– Thus, PARTITION is called at most n times.

10/6/2015 17

Partition array A[p..r]

PARTITION(A, p, r)
x ← A[r] // select the pivot
i ← p − 1
for j ← p to r − 1

if A[j] ≤ x
i ← i + 1
exchange A[i] ↔ A[j]

// move the pivot between the two subarraies
exchange A[i + 1] ↔ A[r]
// return the pivot
return i + 1

18

Average case analysis (cont’d)

Lemma 7.1: Let X be the number of comparisons
performed in line 4 of PARTITION over the entire
execution of QUICKSORT on an n-element array.
Then the running time of QUICKSORT is O(n + X).

10/6/2015 19

The amount of work of each call to PARTITION is a constant

plus the number of comparisons performed in its for loop

Find the number of comparisons

• For ease of analysis:

– Rename the elements of A as z1, z2, . . . , zn, with zi

being the i-th smallest element.

– Define the set Zi,j = {zi , zi+1, . . . , zj } to be the set of
elements between zi and zj, inclusive.

10/6/2015 20

Cont’d

• Each pair of elements is compared at most
once. Why?

• Because elements are compared only to the
pivot element, and then the pivot element is
never in any later call to PARTITION.

10/6/2015 21

Cont’d

• Our analysis uses indicator random variables

• Let X i,j = I{zi is compared to zj }.

= 1 if zi is compared to zj

0 if zi is not compared to zj

• Considering whether zi is compared to zj at
any time during the entire quicksort
algorithm, not just during one call of
PARTITION.

10/6/2015 22

Cont’d

• Since each pair is compared at most once, the total
number of comparisons performed by the algorithm
is

10/6/2015 23

Exercise

• Prove E[𝑋𝑖𝑗] = Pr (zi is compared to zj)

10/6/2015 24

Cont’d

• E[𝑋𝑖𝑗] = 1 ∙ 𝑃𝑟(𝑋𝑖𝑗= 1)+ 0 ∙ 𝑃𝑟(𝑋𝑖𝑗= 0)

= 𝑃𝑟(𝑋𝑖𝑗= 1)

= Pr (zi is compared to zj)

10/6/2015 25

Cont’d

• Now we need to find the probability that two
elements are compared.

• Think about when two elements are not
compared.

– numbers in separate partitions will not be compared.

– {8, 1, 6, 4, 0, 3, 9, 5} and the pivot is 5, so that none of
the set {1, 4, 0, 3} will be compared to any of the set
{8, 6, 9}

26

Cont’d
• Once a pivot x is chosen, such that 𝑧𝑖< x < 𝑧𝑗,

then 𝑧𝑖 and 𝑧𝑗 will never be compared at any

later time

• If either 𝑧𝑖or 𝑧𝑗 is chosen as a pivot before any

other element of 𝑍𝑖𝑗, then it will be compared

to all the elements of 𝑍𝑖𝑗 , except itself.

• The probability that zi is compared to zj is the
probability that either zi or zj is the first
element chosen to be the pivot

10/6/2015 27

Cont’d

• There are (j−i+1) elements, and pivots are
chosen randomly and independently.

• Thus, the probability that any particular one
of them is the first one chosen is 1/(j − i + 1)

10/6/2015 28

Cont’d

10/6/2015 29

30

Harmonic Series:

 𝑘=1
𝑛 2

𝑘
= 2 𝑘=1

𝑛 1

𝑘
< 2lnn+1 = O(lgn)

Changing variables

• 𝐸[X] = 𝑖=1
𝑛−1 𝑗=𝑖+1

𝑛 2

𝑗−𝑖+1

• Let k = j – i. Then, j = k + i

• j ranges between i + 1 and n.

– This means k + i ranges between i + 1 and n

– Thus, k ranges between 1 and n – i

• 𝐸[X] = 𝑖=1
𝑛−1 𝑘=1

𝑛−𝑖 2

𝑘+1

10/6/2015 31

